

Video Technologies for Mars

by John F. McGowan, Ph.D.

Desktop Video Expert Center

NASA Ames Research Center

Mail Stop 233-18

Moffett Field, CA 94035-1000

Web Site: http://zeus.arc.nasa.gov/

Introduction

- One desirable goal for missions to Mars is to provide real-time or near real-time television quality full motion video.
- Studied for a Mars Airplane mission to fly small plane down the Valles Marineris canyon on Mars for thirty (30) minutes.
- Micromission for Year 2003 included in the NASA Year 2000 Budget Proposal.

Introduction

- The issues are largely the same for other Mars Airplanes (aerobots).
- The issues are largely the same for Mars Rovers (telerobots).
- The issues are largely the same for television coverage of manned missions.

Valles Marineris

John F. McGowan, Ph.D. E-Mail: jmcgowan@mail.arc.nasa.gov

8/9/99

Valles Marineris

Valles Marineris

- May have been formed by flowing water in the distant past.
- Other possibilities? Tectonic or volcanic activity? Fissure from asteroid impact?
- High resolution zoom pictures of canyon walls to look for sedimentation or other features.

Wings on Mars

- There have been many proposals for airplanes to fly on Mars.
- Larry Lemke et al recently
- Many more. Apologies to the unnamed.

A Mars Airplane

John F. McGowan, Ph.D. E-Mail: jmcgowan@mail.arc.nasa.gov

Kittyhawk (MAGE Proposal)

John F. McGowan, Ph.D. E-Mail: jmcgowan@mail.arc.nasa.gov

8/9/99

Ames Plane for Year 2000

John F. McGowan, Ph.D. E-Mail: jmcgowan@mail.arc.nasa.gov

8/9/99

Baseline Proposal

- NTSC Color Television Camera (CCD)
- MPEG-1 or MPEG-2 Encoder Board
- 352 by 240 pixels at 30 frames per second
- 4:2:0 Digital Video Format (subsample the color components by two horizontally and vertically)

Video System Parameters

- TOTAL WEIGHT: 2 Kilograms
- TOTAL SIZE: 120 mm by 220 mm by 30 mm (792 cm³)
- TOTAL POWER DISSIPATION: 20 W
- BITRATE: 1 Mbit/second (not including error correcting codes)
- MINIMUM ACCEPTABLE BIT ERROR RATE: 10-6 (assuming random errors)

Video System Parameters

- 1 Mbit/second exceeds any bit rate achieved from Mars to Earth.
- Constant Bitrate (CBR) MPEG Encoder if possible. Given very tight bitrate contraints of communication links, want to limit the bitrate to fixed maximum if possible.

Back of the Envelope

- TOTAL WEIGHT: 1 Kilogram
- TOTAL SIZE: 100 mm by 200 mm by 10 mm (200 cm³)
- TOTAL POWER DISSIPATION: 15-20 Watts
- Based on COTS CMOS components!
- NOT SPACE QUALIFIED

Hitachi MPEG Camera

- TOTAL WEIGHT: 540 grams
- TOTAL SIZE: 83.8 mm by 142.2 mm by 55.9 mm (666 cm³)
- TOTAL POWER DISSIPATION: 6.5 Watts
- Includes battery pack, hard disk, etc.
- NOT SPACE QUALIFIED

Video System Parameters

- This conservative estimate includes substantial extra weight and volume for radiation shielding, rugged packaging, and extra power for heaters or radiation hardened CMOS.
- The overhead for error correcting codes is not included since this varies from code to code.

Many verified (tested and debugged) real-time MPEG encoder and decoder chips and chip designs from multiple manufacturers exist. Selecting MPEG does not lock NASA into a single manufacturer or design.

- Successful products use MPEG at 352
 by 240 pixels at 30 frames per second in 4:2:0 format using the default quantization matrices, meaning 1
 Mbit/second video, to provide television quality video.
- VideoCD players, CD-I players, etc.

- MPEG compression outperforms most other image and video compression technologies.
- Wavelet video and image compression is not standardized. All working implementations are proprietary. Very few hardware implementations exist. Expertise is hard to find.

- MPEG is preferable to the ITU-T H.261, H.263, and H.263+ videoconferencing standards because MPEG supports bidirectionial predictive pictures, B pictures, for better compression.
- Videoconferencing standards are designed for "talking heads" video with static backgrounds.

- MPEG is preferable to ISO JPEG still image compression, e.g. Motion JPEG, for full motion video because MPEG exploits the small differences between successive frames.
- Much greater compression ratio than Motion JPEG.

- C programming language implementations of MPEG encoders and decoders, both MPEG-1 and MPEG-2, are publicly available.
- ISO Standard Documents
- Over a dozen in-depth books.
- Many MPEG Experts

MPEG Problems

- MPEG is sensitive to single bit errors. In a worst case, a single bit error can corrupt a half-second of video.
- No publicly available Verilog, VHDL, or other Hardware Description Language (HDL) MPEG encoders or decoders exist with timing problems solved. All hardware implementations are proprietary.

Hardware Video Encoder

- The Mars Airplane will need to compress the "low resolution" video in real-time.
- 30 minutes of uncompressed NTSC video is 131 Gigabits (color) or 44 Gigabits (black and white).
- MPEG at 352 by 240 by 30 frames per second requires 5,000 MIPS to encode.

Alternative Compression

- Wavelet Video Compression
- MPEG-like video using Block Discrete Cosine Transform (DCT) and motion estimation, but designed to reduce senstivity to errors. For example, Error Resilient Entropy Coding (EREC) proposed by Swann and Kingsbury.

Color and Bitrates

- Can reduce bitrate slightly by sending black and white, the luminance color component, only.
- Color is already subsampled in 4:2:0
- Naively one third of 4:2:0 video is color
- MPEG compressed color more.
- Only gain about 20 percent.

Below Television Quality

- 15 frames per second (jerky)
- 176 by 120 pixels (grainy, blocky)
- Increase quantization step size (artifacts such as blocking, ringing, and blurring)
- Push down to 384 Kbits/second? Quality will be poor.
- Slide show may be preferable!

Noisy Channel Issues

- BER 10⁻⁵ for current missions
- BER 10⁻⁶ by 2003?
- Error correcting codes add to required bitrate but are needed to achieve "low" bit error rates in deep space.
- MPEG sensitive to bit errors.

Noisy Channel Issues

- MPEG at BER of 10⁻⁴ is visual noise!
- MPEG at BER of 10⁻⁵ is poor
- MPEG at BER of 10⁻⁶ is fair (can use)
- MPEG at BER of 10⁻⁷ is good (can use)
- Actual errors with error correcting codes are not random bit errors :-(

Space Hardening

- 10-20,000 rads (Silicon) for Earth to Mars missions.
- COTS parts have thresholds as low as 500 rads and as high as 100,000 rads(Si).
- Off the shelf MPEG Encoders are commercial "bulk" CMOS. May not withstand radiation. Must test.

Space Hardening

- Aluminum box around MPEG Encoder Board.
- Rugged circuit board and packaging may be required.
- Radiation hardened CMOS or SOS. Radiation hardened MPEG encoder chip or chip set is big project.

Space Hardening

- MPEG chip design is demanding!
- High risk of failure.
- No public timing information.
- Timing changes for each semiconductor process.
- MPEG sensitive to small errors. Must get the design right.

- 8.25 Kbits/second Mars Pathfinder
- Max 85 Kbits/second Mars Global Surveyor
- 256 Kbit/second in 2003?
- Slide Show (reduce frame rate)

- MPEG exploits small differences between successive frames.
- At low frame rates (1 frame per second) differences between successive frames may be too large for effective use of MPEG.
 - Errors propagate across frames in MPEG.

- At some low frame rate, better to use still image compression such as ISO JPEG still image compression for slide show.
- Still image restricts errors to a single frame.
- Naive MPEG at 1 fps: 33.3 Kbits/second
- Naive JPEG at 1 fps: 66 Kbits/second
- Still a demanding bitrate for Earth to

John F. McGowan, Fr.D. S E-Mail: jmcgowan@mail.arc.nasa.gov

- POWER, WEIGHT, and VOLUME essentially the same as MPEG video system. Just substitute still image encoder, either ASIC or CPU, for MPEG Encoder.
- Space Hardening Issues are the same.
- Noisy Channel Issues may differ.
- Can use software image encoding. More flexibility. Wavelets!

E-Mail: jmcgowan@mail.arc.nasa.gov

- Several Gigabits of RAM has been sent to Mars already.
- 30 minutes of MPEG-1 video requires 1.8 Gigabits of storage.
- Can forward stored video at slower than real-time rates, e.g. 256 Kbits/second
- Several hour delay with store and forward.

- Several Gigabits of RAM
- High Gain Antenna to Earth
- For Valles Marineris, a communication satellite in Geosynchronous Mars Orbit over the canyon seems ideal.
- Fly Mars Airplane toward a land station on canyon floor?

- Geosynchronous Mars Orbit Satellite
- Delayed Flyby of Mars (as in MAGE)
- Balloon
- Land Station
- Other concepts?

- A store and forward relay on Mars or in Mars orbit can retransmit corrupted data.
- Retransmission eliminates noisy channel problems at cost of longer delay. Must wait for retransmission of the corrupted data.
- With four to eight minute Earth to Mars delay, video never used in real-time.

- A Mars Local Relay, especially a Geosynchronous Mars Orbit satellite, can be justified to support multiple missions, not just Mars Airplanes.
- Local Relay can include science instruments.
- Local relay could include video camera as well. Dust storms.

- Can relay be a micromission itself?
- Accompany the Mars Airplane somehow arriving in orbit ahead of the plane?
- It is difficult to secure funding and support for pure support missions that enable other missions since there is no immediate payback and dollar cost is substantial.

Conclusion

- TOTAL WEIGHT: 2 Kilograms
- TOTAL SIZE: 120 mm by 220 mm by 30 mm (792 cm³)
- TOTAL POWER DISSIPATION: 20 W
- BITRATE: 1 Mbit/second (not including error correcting codes)
- MINIMUM ACCEPTABLE BIT ERROR RATE: 10-6 (assuming random errors)

Conclusion

- Principal obstacle to video appears to be the limited bit rates of current or near future Mars to Earth communication links.
- A local relay station such as a Geosynchronous Mars Orbit communications satellite may offer a solution.

Further Information

- White Paper on Video Technologies for Mars Airplane
- http://zeus.arc.nasa.gov/mars.pdf
- In Adobe Acrobat Portable Document Format (PDF)